Tutorial

9
Zaval Light-Weight Visual Component Library

Zaval Light-Weight Visual Component Library

Version 3.5.4

Tutorial

Zaval Creative Engineering Group

http://www.zaval.org

Contents

3Introduction to the Zaval Light-Weight Visual Components Library

Is it difficult to use the library?
3
Architecture.
4
Lightweight library deployment.
9
Lightweight library core package
9
Lightweight library extension package
9
Deployment steps
9
Lightweight properties file format
10
Lightweight Component.
11
Abstraction
11
Lightweight component
11
Lightweight container
13
Lightweight painting
14
Lightweight view management
15
Lightweight events concept
17
Lightweight validation
18
Lightweight static objects
19
Lightweight scrolling
19
Lightweight application and applet
19
Lightweight windows
20
Support available
21
Stay informed!
21

Introduction to the Zaval Light-Weight Visual Components Library

Zaval Light-Weight Visual Components Library (LwVCL) is a pure Java alternative to humble AWT-based GUI interfaces for wide ranges of platforms, including PersonalJava, J2SE and J2ME.

Designed as light-weight but built separately from AWT (not on top of the java.awt library like Swing), the LwVCL is the good alternative to highly performant, memory-efficient, flexible GUI solution for embedded, stand-alone and applet applications.

LwVCL can be used on wide range of PersonalJava compatible devices, including Sharp Zaurus, Compaq iPAQ and top models of mobile phones with the same API as it is used in J2SE application; our library is the most efficient way to develop highly scalable GUI applications from PersonalJava to any J2SE applications.

Is it difficult to use the library?

The best way to demonstrate the library usage is a good sample. Below you can find simple application that has been created using the lightweight library (left column) components and Java AWT components (right column).

	Lightweight sample code

	AWT Sample code

	package org.zaval.lw.samples;

import org.zaval.lw.*;

import org.zaval.lw.event.*;

public class LwVCLDemo

{

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 LwContainer root = frame.getRoot();

 root.setLwLayout(new LwBorderLayout());

 LwButton button = new LwButton("Add");

 final LwList list = new LwList();

 final LwTextField text=new LwTextField ("Demo", 10);

 button.addActionListener(new LwActionListener() {

 public void actionPerformed(LwActionEvent e) {

 list.add(new LwLabel(text.getText()));

 }

 });

 root.add(LwBorderLayout.NORTH, text);

 root.add(LwBorderLayout.CENTER, list);

 root.add(LwBorderLayout.SOUTH, button);

 list.getViewMan(true).setBorder("br.sunken");

 frame.setSize(200, 200);

 frame.setVisible(true);

 }

}
	package org.zaval.lw.samples;

import java.awt.*;

import java.awt.event.*;

public class AwtDemo

{

 public static void main(String[] args)

 {

 Frame frame = new Frame();

 frame.setLayout (new BorderLayout());

 final List list = new List();

 final TextField text = new TextField("Demo", 10);

 Button button = new Button("Add");

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 list.addItem(text.getText());

 }

 });

 frame.add(BorderLayout.SOUTH, button);

 frame.add(BorderLayout.CENTER, list);

 frame.add(BorderLayout.NORTH, text);

 frame.setSize(200, 200);

 frame.setVisible(true);

 }

}

	Lightweight demo application

	AWT demo application

	[image: image1.png]
	[image: image2.png]

These two applications are practically the same, so there is no problem for Java AWT programmers to use the Zaval Light-Weight Visual Components Library. As you see even this simple example shows some powerful features of the library:

· The lightweight list component uses other components as list items, but the AWT list component can have only strings as item.

· The lightweight component provides special view manager to customize the component view. In this example the view manager is used to set border view for the list component.

Architecture.

The core idea is to reject java.awt.Component inheritance. The library provides LwComponent interface that is a base for all components of the library, instead of java.awt.Component. The library architecture is shown below.

[image: image3.png]
The lightweight library has three levels:

1. Level 0 (Native). This is Java AWT area. In common case this level represents a Java UI implementation. As a rule this level provides java.awt.Graphics, java.awt.Image, java.awt.Canvas or their analogues. Actually it is enough for Adaptive level to be easy implemented.

2. Level 1 (Adaptive). This level adapts native events to appropriate lightweight events, provides ability to work with graphical context and has a set of native-specific methods that are necessary for the library. LwDesktop adaptive class is responsible for native events conversion process and it provides set of methods to work with a graphical context. LwToolkit adaptive class provides set of native-dependent methods. This level is very important to use the library on other systems that have their own Java UI implementations (for example portable devices). To adapt the library it is necessary to re-implement the level classes and you shouldn’t touch lightweight components set.

3. Level 2 (Light Weight). This is a core level. This level provides all classes and components that are necessary to develop your own components and applications based on the lightweight library. This level can be divided as follow:

a. Lightweight components. This is a set of widespread GUI components that are ready to be used. The list of the components is shown below:

	GUI Component

	Short Description

	LwVCL core package (lw.jar)

	LwCanvas
	This component implements LwComponent interface and should be used as a base for your own lightweight components development. This is something like java.awt.Canvas component in AWT.

	LwPanel
	This component implements LwContainer interface and should be used as a base for your own lightweight containers development. This is something like java.awt.Panel component.

	LwLabel
	This component is used to show text messages (including multi-line text).

	LwButton
	The button component that can use images, labels and other lightweight components as a caption.

	LwCheckbox
	Checkbox component. This component is used to organize radio group, checkboxes.

	LwBorderPan
	The border panel is used as a decorative panel that can have other component as a title. The title can have one of the following alignments: top, bottom, left, right, center.

	LwLink
	The text link component. It is like a text html link.

	LwImage
	This component is used as a canvas to show images (“gif” and “jpg”).

	LwStButton
	This is a toolbar button component.

	LwList
	List component - it uses other components as list items and can be used with different layouts that implement special interface (for example list and grid layouts).

	LwCombo
	Combo box component can use other components as list items.

	LwTextField
	Text field component can be used to enter single-line text, multi-line text, fixed size text and passwords. Starting from version 1.1.x this component provides block operations (it is possible to select and put data into clipboard, get and insert clipboard text).

	LwSplitPan
	Splitter panel component can be used to split two components and place the components inside sizeable areas. The splitter can have horizontal or vertical alignment.

	LwNotebook
	Notebook component supports different alignments for notebook tabs (top, bottom, left and right).

	LwScrollPan
	Scroll panel component can be used to organize scrolling for any lightweight component.

	LwScroll
	Scroll bar component. This component can have horizontal or vertical orientation.

	LwTree
	Tree view component - it can be used to render and navigate through tree-like structure.

	LwStatusBar
	Status bar component can be used to organize status bar panel that consists of other lightweight components.

	LwProgress
	Progress bar component can be used to show progress status for different actions.

	LwGrid
	It’s a powerful grid component that allows matrix data model rendering. It is possible to customize cell rendering, cell editing processes, etc. It is based on MVC model.

	LwVCL extensions (lwext.jar)

	LwTreeGrid

	This component is based on LwGrid component and is used to render two bound data model: tree data model and matrix data model.

	LwSpin

	The spin component allows input bound integer value.

	LwMaskTextField

	This component is a text field that allows filtering input data according to a selected mask. It is possible to use letter, numeric and date masks. Alternatively, you can implement your own masks.

	LwWindow

	Internal frame window implementation.

	LwSlider

	This is a slider component. You can use it to get integer value for the specified interval (like using ruler to measure distance).

	LwColorPanel

	This special panel provides user interface to select a color.

	LwFontPanel

	This special panel provides user interface to select a font.

	LwFilePanel

	This special panel provides user interface to select a file.

	LwBlankDialog

	This component allows constructing dialogs using for example LwColorPanel, LwFontPanel, LwFilePanel and so on.

b. Lightweight managers. The LwEventManager is the basic manager for the library. This manager defines message delivering strategy and should be defined for the library. Another important manager is a paint manager. It is used with the lightweight component implementation to paint itself. The managers can be used as listeners for different lightweight events. For example, focus manager listens for mouse events to pass focus through components. All managers are initialized with lightweight manager (LwManager). Any manager can be overwritten. The manager deployment concept is powerful but still easy to use (See chapter - “Lightweight library deployment”). Below you can find brief description for a set of managers that are implemented and used within the library.

	Lightweight Manager

	Short Description

	LwEventManager

	This is a core manager – it connects levels 1 and 2. Main purpose of this manager is to determine event delivery strategy. Every lightweight event goes to the manager and only manager can distribute event according event distribution strategy. Lightweight events can be generated by lightweight components, lightweight managers and Level 1. This manager supports listeners that can be used with other lightweight managers or components.

	LwPaintManager

(LwPaintManImpl)

	Paint manager is responsible for actual presentation of the lightweight components (painting). Initial manager implementation uses double buffering to speed up lightweight components painting. It also supports component transparency and views.

	LwFocusManager

	Focus manager controls focus for components that can be used as input elements (buttons, text fields and so on). The light-weight component has canHaveFocus method to define if it can have focus. This manager is registered as a mouse and keyboard listener. To “jump” through components you can use both mouse button (mouse down event) and “TAB” key.

	LwCursorManager

	Cursor manager controls mouse cursor status. LwComponent interface does not control mouse cursor itself, so you shouldn’t make any changes to it – everything should be done through LwCursorManager.

	LwClipboardMan

	Clipboard manager is used to store and fetch data from the clipboard. Core clipboard implementation does not support interaction with system clipboard, so it is impossible to exchange data between other application and lightweight components. However, you can implement your own clipboard manager based on java.awt.datatransfer.Clipboard Java AWT class.

	AWTPopupManager

	Popup manager allows java.awt.PopupMenu binding with the specified lightweight component. LwComponent interface does not control popup menu itself, so you shouldn’t make any changes to it.

	LwTooltipMan

	Tooltip manager supports tool-tips for other components of the library. Note: you can use any other lightweight component as a tool-tip.

So, LwVCL has 3-Tier architecture that separates functionality on three independent levels. This feature allows porting the library to other systems (different JVMs for portable devices, for example) and makes the library more flexible. The library event distributing mechanism can be easily modified according to the user requirements.

Lightweight library deployment.

Lightweight library core package

Library itself has the following structure (see lw.jar):

· org.zaval.lw – lightweight library GUI components.

· org.zaval.lw.event – lightweight library events.

· org.zaval.lw.tree – lightweight library tree view component.

· org.zaval.lw.grid – lightweight library grid component.

· org.zaval.lw.rs – lightweight library resources.

· org.zaval.lw.rs.img – images that are used as views of the lightweight components.

· org.zaval.* – other useful packages.

The org.zaval.lw.rs contains lightweight properties file (lw.properties) that is used with LwManager to get information about lightweight managers and static objects that have to be deployed. LwManager reads and parses the file before deploying.

Lightweight library extension package

Lightweight library extension package is a set of different lightweight components that usually are too specific to be included to the core package. LwVCL extension package has the following structure (see lwext.jar):

· org.zaval.lw – lightweight library GUI components.

· org.zaval.lw.event – lightweight library extension events.

· org.zaval.lw.mask – lightweight library extension masked text field components.

· org.zaval.lw.grid – lightweight library extension tree grid component.

· org.zaval.lw.rs – lightweight library extension resources.

· org.zaval.lw.rs.img – images that are used as views of the lightweight extension components.

· org.zaval.* – other useful packages.

The org.zaval.lw.rs contains lightweight extension properties file (lwext.properties) that is used with LwManager to get information about lightweight managers and static objects that have to be deployed. LwManager checks whether this properties file exists and parses it before deployment.

Deployment steps

The main actor of the deployment process is LwManager. This class has static section that starts the deployment process of the library. Actually, it performs the following actions:

1. Creates and initializes LwEventManager (this is a core manager) and other lightweight mangers. LwManager creates instances of all lightweight managers and registers the managers as event listeners if it is necessary. A manager has to be registered as an event listener if it implements corresponding listener interface, so it is not necessary to think about registering as listener, this will be done with LwEventManager automatically.

2. Creates and initializes static objects. Static object is an object whose functionality can be shared safely with other objects. It means that it is not necessary to have several instances for such objects, it is possible to create one instance and other objects can use it. The static object concept helps the library to decrease system resource usage and increase performance. To get an instance of a static object you should use getStaticObject(Object key) static method of LwManager. LwManager has a hash table to store static objects instances (they are accessible by a key). The key should be determined by properties file tag (obj.<name>.key).

Lightweight properties file format

The lightweight properties file name is hardcoded (“lw.properties”) and is stored in org.zaval.lw.rs package. Just the same with lightweight extension properties file (“lwext.properties”). Both have the same format - it consist of name-value pairs <propertyName(.subPropertyName)*>=<value>. Below you can find basic sections of these files.

	Static object information part

	obj

	This section represents a list of static objects sections names that will be used to create static objects instances. For example: “obj=border, image1” means that LwManager has to create two static objects, that are described with “obj.border.*” and “obj.image1.*” sections.

	obj.<name>.cl

	This is class name for a static object named “<name>”. The class name is determined relatively org.zaval.lw package if full package name was not specified. It is possible to use a reference as the property value (the reference idea will be described below).

	obj.<name>.arg

	List of arguments that have to be used to construct an instance of the object. The arguments have to be separated with comma. It is possible to use four types of the arguments:

1. Integer. An integer argument is an integer value (without quotes, example: obj.border.arg=1).

2. String. A string argument should be quoted (for example: obj.border.arg=”This is string argument”).

3. Boolean. The boolean argument can be either true or false (without quotes, for example obj.border.arg=true).

4. Reference (for example obj.border.arg=@refkey). The reference idea will be described below.

If the property file doesn’t contain the arg section for a static object than LwManager will try to use default constructor to create static object instance.

	obj.<name>.key

	A key of the static object. The section determines a key that has to be used to get instance of the static object.

	Managers information part

	man
	This section represents a list of manager names (these names will be used as sections names in the properties file). They will be used to create managers instances. For example: man=paint, focus means that LwManager has to create two managers that are described with “man.paint.*” and “man.focus.*” sections.

	man.<name>.cl

man.<name>.arg

	These sections usage are similar to the “obj.<name>.cl” and “obj.<name>.arg” sections.

	man.event.cl

	This section determines class name for core event manager. This manager will be used as an event distributor and a destination for all lightweight events that are performed within Level 1. The class name is determined relatively org.zaval.lw package if full package name was not specified.

As it was described above, it is possible to use reference as a class property value or as an argument property value. The reference is a value that starts with “@” character. Note: After ‘@’ character you should place a string that is a key of another static object. For example, we have a border description:

obj.border.cl=LwBorder

obj.border.arg=3

obj.border.key=etched

and we want to use the border as the “off “ state view for the button component. In this case we can make a reference to the border described above:

obj.button.cl=@etched

obj.button.key=button.off

Lightweight Component.

[image: image4.png]
Abstraction

Let’s consider the abstraction component (GUI) definition. Actually there are three core notions (see image below):

· View. View is like a “face”. View is used to reflect the component state and it allows users interacting with a component.

· Validation. Validation is bound with different metrical parameters (preferred size, fonts, and so on). These parameters are used to render and layout the component. A GUI component can be shown if it is valid.

· Events. Events are like “blood” that makes the GUI Component “alive”. A GUI component can receive, handle and perform different events.

As rule these three notions depend on each other, the image above shows these dependences by intersection three notion-circles. This concept is simple, but it helps to understand library ideas correctly.

Lightweight component

Lightweight component is a component that implements LwComponent interface. Draw attention that light weight component has no relations with java.awt.Component (like AWT or SWING components). So the lightweight component is “real” lightweight component that rejects any relationships with the “native” java.awt.Component. This approach helps to solve the following problems:

· Hardcoded view. It is impossible to inherit, for example, java.awt.TextField component to re-implement some functionality, because it is not a lightweight component. Actually the component is a wrapper for a system GUI component and it is practically impossible to change its behavior.

· Slow painting and creating process. Try to use a large number of Java AWT components in a real project. An application will work extremely slow (actually, it is impossible to use big number of Java AWT components).

· Core set of the Java AWT components is not enough for real applications development.

The SWING library is more powerful than Java AWT library, but it’s very greedy to the system resources (have a look to the memory usage). Moreover, SWING components are based on AWT components (java.awt.Component). The big size of the library makes it useless for mobile devices and thin clients (the client has to download the whole package, or install special plug-in to his browser).

In addition, the library provides lightweight container interface - LwContainer. Usage of the simplest implementation of this interface (LwPanel) is practically identical to java.awt.Container usage. Before we go to the description of the lightweight component let’s define basic lightweight notions:

Det. 1: Validation – a lightweight component is valid if all metrical characteristics are defined and calculated. For example, if a text is changed for LwLabel component than it is necessary to recalculate size of the new text. The new size will be used to calculate preferred size of the component.

Det. 2: Transparency – a lightweight component is transparent if painting process doesn’t use a background of the component. In this case the component uses a parent background.

Det. 3: Preferred size – this is size that a lightweight component “wants” to have plus the component insets. Preferred size depends on validation status, only a valid component can have correct preferred size.

Det. 4: Clip Area – this area where painting is possible. Rendering operations have no effect outside of the clipping area.

Det. 5: Insets – this right, left, top, bottom indents that determine clip area for painting process. If a component has size - (w, h), location - (x, y) and insets - (left, right, top, bottom) than it will have the following clip area: (x + left, y + top, w – left – right, h – top - bottom). Moreover layout managers use the insets as the gaps to layout its child components.

Det. 6: Origin – this is a component view offset. Origin defines how the component view has to be offset relatively the component point zero-zero (basis of coordinate system). This is useful to organize scrolling.

Det. 7: Enablement – Enablement determines ability to receive, handle and perform events for a component. Only enabled component can be a member of event distribution process.

Below you can find basic properties of the lightweight components:

	Property name

	Methods
	Description

	size

	Dimension getSize()

setSize(int, int)

	This property determines size of the component. If component is a child of a container that layouts children according to preferred size than it is impossible to determine size of the component via method setSize(int, int) (see chapter Lightweight container to understand the layout algorithm)

	location

	Point getLocation()

setLocation(int, int)

	This property determines location of the component inside a container. The parent container can set the location for their children by a layout manager, so it may be impossible to set a location via method setLocation(int,int)

	preferredSize
	Dimension getPreferredSize()

setPSSize(int, int)

	This property defines a preferred size of a component. There are two possible ways to set preferred size:

1. The preferred size is calculated according to metrical characteristics (LwComponent) or according to a layout manager implementation (LwContainer).

2. The preferred size can be fixed by setPSSize(int, int) method. If you don’t want to specify size directly you can set corresponding property (width or height) to ‘-1’.

	opaque
	boolean isOpaque()

setOpaque(boolean)

	This property is responsible for component transparency. If it is set to “false” the component is transparent.

	visibile
	boolean isVisible()

setVisible(boolean)

	This property defines visibility state of the component. If it is set to “true” the paint manager will render the component and a parent container will layout one.

	enabled
	boolean isEnabled()

setEnabled(boolean)

	This property defines whether component will receive events from other components. If it is set to “true” the component will participate in event distribution process.

	valid
	boolean isValid()

validate()

	This property defines validation status of the component. If it is set to “true” the component is valid. To perform validation process use validate() method. A container component is responsible for validation status of its children components.

	insets
	Insets getInsets()

setInsets(top, left, bottom, right)

	This property defines insets for a component.

	origin
	Point getOrigin()

	This property defines an origin for a component.

	background
	Color getBackground()

setBackground(Color)

	This property defines a background color that will be used by the component (if the component is not transparent)

Lightweight container

Lightweight container is a lightweight component that can have other components as children. The library provides container interface - LwContainer and of course, has generic implementation of this interface - LwPanel. Lightweight container usage is similar to java.awt.Container usage, but there are two essential differences:

· A layout manager has to be always defined for the lightweight container. AWT library allows going even without layout manager usage, but you can face with problems trying to combine layout and non-layout ways in AWT application. However, it does not mean that it is impossible to layout lightweight components using sizes and locations specified by the setSize(int, int) and setLocation(int, int) methods. The library provides special layout manager - LwRasterLayout - for this purpose. The complete set of layouts that go with the library by default is shown below:

	Layout

	Short Description

	LwBorderLayout
	This is analog of java.awt.BorderLayout.

	LwGridLayout
	This is like a mix of java.awt.GridLayout and java.awt.GridBagLayout layouts

	LwRasterLayout
	This layout manager uses location and size that have been set with setLocation(int, int) and setSize(int, int) methods or the layout uses preferred sizes of the child components. Special boolean flag (that passed as argument during initialization of the layout) points what size (preferred of set with setSize(int, int)) should be applied for child components.

	LwFlowLayout
	This is like a java.awt.FlowLayout but it has some additional features.

	LwListLayout
	This is a special layout that is used for LwList component.

	LwPercentLayout

	This layout manager placed its child components vertically or horizontally according percentage constraints.

· The next difference is that lightweight layout manager is designed to layout Layoutable components inside LayoutContainer. It means that lightweight layout managers can be used for other components (even non-GUI components) that implement two interfaces (Layoutable and LayoutContainer), not only for lightweight components. At the same time Java AWT layout managers cannot be reused outside Java AWT Library.

Lightweight painting

Any lightweight component has a view. There are two ways to implement lightweight component view:

· Lightweight component provides two methods that can be overridden: paint (Graphics g) and update(Graphics g). First method is used to paint view of the component and the second method for updating the component area (filling with the background color). It’s not specific - it is the same Java AWT painting component algorithm. Lightweight container has paintOnTop(Graphics g) method that is called after all child components has been rendered.

· Lightweight component has a view manager. The manager can be used to determine view for the component dynamically. The library provides a set of ready to use views (border, image, text, etc) that can be used for this purpose (see the next chapter to understand the view management concept)

The two ways are demonstrated in the table below:

	Painting methods overriding

	View manager usage

	public class MyComponent

extends LwCanvas

{

 public update (Graphics g)

 {

 Dimension size = getSize();

 g.setColor(Color.red);

 g.fillRect(0, 0, size.width, size.height);

 }

 public paint (Graphics g) {

 g.setColor(Color.black);

 g.drawString(“This is my view”, 20, 20);

 }

}
	LwComponent c = new LwCanvas ();

LwViewMan m = c.getViewMan(true);

// Sets the border

m.setBorder(new LwBorder(LwBorder.PLAIN));

// Sets the image as the component background

m.setBg(new LwImgRenderer(“myBg.gif”)) ;

// Sets the text render as the “face “ of the component

m.setView(new LwTextRenderer(“This is my view”));

Lightweight component provides repaint method. This method initiates repainting process. Lightweight component has no specific implementation for this method - it just calls appropriate method of lightweight paint manager that knows how the components should be painted. Current implementation of the paint manager supports the following features:

· Double buffering. It means that lightweight components are painted using memory buffer and after that the memory buffer is painted on a visible surface. This feature allows avoiding blinking and improves painting performance. However, double buffering can be toggled off with special method of the paint manager if you need system resources saving.

· Component transparency. Any lightweight component can be transparent. It means that the component has no background. In this case a parent component background will be used as the child background.

· View manager support. View manager is a special class that determines “face” of the component by a set of views. View is a class that provides painting rules. This feature allows using view for any lightweight component with no changes to the component functionality. To get more information about view management and view creation see chapter Lightweight View Manager.

Lightweight paint manager implementation uses the following algorithm to draw a component:

1. Validates a component if it is necessary.

2. Calls update(Graphics) method if the component is not transparent (a component is transparent if the method isOpaque returns “false”). If the component is transparent and has a view manager which defines a background view than the view will be used as the component background (in this case update(Graphics) method is not called), if the component has no background view than the background color will be used to fill the component area.

3. If the component has a view manager than the paint manager paints a border view and a face view (if these views are determined).

4. Calculates clip area. The clip area is calculated as intersection of the component size (minus the component insets) and current clip bounds.

5. If the component determines its own origin via getOrigin() method than the paint manager sets new origin. Origin can be used if it is necessary to shift the component image (for example this feature is used to organize scrolling for LwTextField component).

6. If component has a view manager and the view manager determines a “face” view than paint manager draws the view.

7. Calls paint(Graphics) method of the component

If the component has a child component (in this case the component is a container) than the paint manager computes clip area, transforms point of origin accordingly the child location and performs painting process for the child as described above. The process is repeated for all visible child components. After that the paintOnTop(Graphics) method is called

Lightweight view management

First of all let’s understand what the view is. Very often it is necessary to solve two tasks:

1. Painting decorative elements. In real applications every GUI component uses some decorative elements as a part of its “face”. For example, a checkbox component has toggle element, every components can have border or complex background (image). So, it is necessary to have ability to control the view (for example, if somebody wants to have other view for a checkbox toggle element). Java AWT library components do not provide ability to change view dynamically, as the Java AWT components views are hard-coded with paint(Graphics) method. In this case if you want to change a component view, it is necessary to inherit the component and override the paint(Graphics) method. The lightweight library provides special abstract class - LwView to implement own views. Views can be used as a part of “face” for a given lightweight component with a view manager of the component.

2. This is very important to have ability to paint different objects (images, text and so on). The library provides special abstract class LwRender. The class inherits LwView class and this is a variation of a view that has been described above. The main difference of the render from the view is the render is bound with an object and it is used to paint the object. Actually, render is a bound view.

The second question is views and renders usage. For this purpose lightweight component has a view manager. The manager provides ability to determine 3 view types:

· border view – the view will be used to paint a component border

· background view – the view will be used to paint a background (for example it is possible to use an image as a component background)

· face view – the view will be used as a face of the component (for example LwLabel component uses LwTextRender as the face view)

The library provides advance view manager that can be used to support dynamic view changing. The main feature is that manger can contain set of named views for a component face. The name of a view determines state of the component at the moment.

For example LwButton component uses advanced manager to define two named views: “button.on” and “button.off”. In this case, “button.on” name correspond to button pressed state and the button uses a view that is bound with the name, otherwise will use “button.off” view.

The last question is a view painting process. To define your own view it is necessary to inherit LwView or LwRender class and determine paint method for the class. The method is called with a paint manager. The paint manager passes graphics, location - where the view has to be drawn, size - that has to be used and an instance of object - for which the view is painted. The view can be painted with three manners according to the view type:

1. The view has ORIGINAL type. In this case, the paint manager passes preferred size of the view as the view size and insets.left, insets.top as the location.

2. The view has STRETCH type. In this case, the paint manager passes size of an owner component for which the view is drawn, location is (0, 0). The type is used to stretch view image along the owner component surface.

3. The view has MOSAIC type. In this case, the paint manager passes preferred size of the view as the view size, but the view will be painted as many times as it can be placed inside the component area, the view location will be calculated for every time. The type is useful if it is necessary to define background pattern (for example using image pattern) for a component.

The table below shows views and renders that go within this library:

	View/Render
	Short Description

	LwBorder
	This view provides set of different borders that can be used as border view for a component. The view is used to define a component border. It is not necessary to create own border view instances, because the library stores the border set as set of static objects instances that are available (use LwManager) by following keys: “br.etched", "br.raised", "br.sunken", "br.plain", "br.dot".

	LwTitledBorder

	This view functionality is based on LwBorder view and it can be used to paint a border with a title area.

	LwImgRender
	This render is used to paint an image (target is java.awt.Image).

	LwImgSetRender

	This render is used to paint the specified part of the target image (java.awt.Image).

	LwTextRender
	The following render is used to paint a text (target is org.zaval.data.Text).

	LwPasswordText
	This render is used to paint a password text (it is based on LwTextRender).

	LwAdvTextRender

	This render inherits LwTextRender to support block painting.

	LwCompRender

	This render is used to paint a light weight component (target is org.zaval.lw.LwComponent).

	LwWrappedText

	This render is used to paint wrapped text. The render brakes a text line if the line cannot be placed inside the drawable area wholly.

	LwBundleView

	This is bundle element view. It is used by scroll bar component to paint bundle.

	LwCursorView

	This is text cursor view that is used by text field component.

Lightweight events handling concept

This is a very important chapter. LwVCL library uses listener concept like Java AWT or SWING libraries. It means that if you want to handle any event than it is necessary to register appropriate event listener. The events and listeners are much like in AWT library (see package org.zaval.lw.event.*) and hope, you’ll get it easily. But there are several key differences:

· First of all, lightweight component has no listener support. The lightweight component doesn’t implement event distribution functionality and this is really good, because event distribution is concentrated in one place - event manager. This way has one more advantage: it decreases memory usage because lightweight component doesn’t contain list of listener (listeners support). It’s very simple: if you want to catch events inside your lightweight component, it is necessary just to implement appropriate listener interface and event manager will immediately send events to the component. For example, to catch mouse events inside your component, you should implements LwMouseListener. As it was described above, a lightweight component doesn’t provide listeners support for mouse, key, component, container, focus and so on events unlike a Java AWT component. But it is possible to handle all these tasks using LwEventManager, by registering appropriate listener - your listener will get appropriate events for all components, so if you want to listen the events for certain lightweight component you should test sources of the events.

· The lightweight library provides mechanism to control input child events. The input event is an event that is initiated by mouse, keyboard or any other input device. This is very important to have this feature for creating composite components. Composite component is a component that consists of several components that have to work together. For example LwButton is a composite component. The button component can have other components (including any other composite component) as a child. The problem, in this case, is following: if a mouse button has been clicked over any child component, the button mouse listener will not get the mouse event and so cannot handle it. There are several ways to resolve the problem:

1. Register mouse listener for any button child component using the event manager listener support. It allows children mouse event listening and handling inside the button. This solution is like Java AWT (but in this case it is necessary to test if the event source of the event is the child of the composite component), but this way doesn’t solve the problem if you want to use other composite component as a child (in this case you cannot control such child component).

2. Another way is provided with the lightweight library, Java AWT hasn’t anything like that. The main idea is that parent component can control input events distributing process for child components. In this case the parent component should implement LwComposite interface and at the moment the event manager will “ask” the composite component if the child component input events should be caught by the parent or not. If the composite component says that he wants catch child input events, lightweight event manager distributes the event as if the child component doesn’t exist. The child becomes “transparent” for input events. The image bellow illustrates the composite components mechanism (for more info see chapter Creating composite component):

[image: image5.png]
1. First, LwDesktop (this is lightweight top-level container for all other lightweight components) gets native input event (mouse event) and converts this event to appropriate lightweight event.

2. LwDesktop asks LwEventManager what lightweight component is a source of the event based on its location.

3. LwEventManager defines the source according to the location.

4. LwEventManager tries to find if the source component has a composite parent component.

5. If the parent composite component is exist than LwEventManager asks it (by executing catchInput method) whether the child input event should be caught by the composite component or not.

6. LwEventManager distributes the input event to the composite component or the child component depending on the previous step.

Note: The algorithm is recursive, so it will work fine if there are several composite components in a hierarchy.

· The parent component can listen child components events by implementing the LwChildrenListener interface. The different from the previous point is the child component gets the event, he is not transparent for the generated event, but parent component only gets the child event after the child has handled it.

Note: it is impossible to catch some of the child components event. For example, mouse moved events cannot be caught by the parent component. The reason is possible performance issue.

Lightweight validation

Validation is also important part of lightweight component lifecycle. In compliance with validation notion only valid component can be laid out and painted. The main purpose of the validation process is to calculate the component metrics. The metrics define a preferred size and the preferred size is used to layout the component with a layout manager of a parent container. The library provides two types of lightweight components and accordingly two ways to calculate component metrics:

· LwComponent (LwCanvas), LwView, LwRender. These interfaces determine simple lightweight component and views. In this case validation process calls recalc() method to compute component and view metrics. To perform a validation process you should not call the method directly, it is necessary to call validate() method of the lightweight component or view and after that, if the component is not valid recalc() method is called. It means that recalc() method will be executed only if it is really necessary. It allows avoid redundant calculation of the component metrics.

· LwContainer (LwPanel), LwViewMan. These interfaces and classes determine components and views containers. The main difference is that a container metrics are defined by children components, so you should not override recalc() method and perform any metrics calculation. Draw attention that a container component is responsible for children validation. It means, if a validation process is performed for a container with validate() method than the validation process will cover every child component.

Lightweight static objects

The library has special type of objects – static. The static object is a class whose instance can be used safely with several other classes. For example, lightweight component view manager has a method to define border view, but there are only several types of borders and it is not necessary to create the same border view instances for different components. In this case, we can have set of border view instances and use one border view instance for several lightweight components according to the border type. So, static object concept is used to decrease system resource usage.

Let’s define the notion of the static object, what class can be used as a static? It is obvious, that static class instance should not allow any properties changes, because the same instance is shared between other classes. The static object for the lightweight library has to comply with following statements:

· Any properties changes for static object instance are not allowed. All properties should be defined during construction of the instance.

· To use the static object instance it is necessary to describe the static object in lightweight properties file (static object section). And only after that the instance will be available by LwManager class.

· It is possible to use integer, string and boolean argument types for static object constructor input, so only these types can be used for static object constructors.

· The library identifies an instance of the static object by the instance key (to get the instance it is necessary to know the key). The key is defined in the corresponding section of the lightweight properties file.

Lightweight scrolling

Actually, there are two ways to organize scrolling for a GUI component:

· By changing the component location inside the container.

· By moving a view of the component.

LwVCL library supports both ways. The basic rules that you should use to implement component scrolling are shown below:

· Use org.zaval.misc.ScrollObj interface to provide appropriate scrolling mechanism, the interface will be used with the scroll panel (LwScrollPan) to scroll the component.

· Use getOrigin if it is necessary to move a view for the component. The method tells the library (paint manager uses the information) how the component view should be moved relatively to the component origin.

· Use getLayoutOffset method if it is necessary to scroll child components inside the container. The method points a layout manager how the child components should be moved.

Lightweight desktop

The basic idea is all lightweight components “live” on the LwDesktop. The desktop is lightweight container that consists of layers (desktop child components) where every layer is special lightweight container (LwLayer) placed over all desktop area. Whenever any lightweight event is performed the desktop looks for a layer that is active and only this layer’s components can get the event. In other words the desktop is like sandwiched pie where only one layer can be active in the moment. Pay attention that several layers can want to be active, in this case the desktop selects last added layer among these layers.

As it has been mentioned before layer is a special lightweight container. The layers get the following events from the desktop:

1. Mouse pressed event.

2. Key pressed event.

The events above are generated before event distribution, before the event manager gets it. The purpose is to give a chance for the layers to be activated. For example, the window layer uses the mouse pressed event to activate a window if it is possible and set the layer status to active.

The active layer additionally gets the focus setup and focus release (the events are performed when the desktop got or lost the focus) events.

The other important thing that is defined by the layer is the focus root component. The root component is used with the focus manager as the top-level component to look up next focus owner whenever “TAB” key is pressed.

The LwVCL desktop contains two layers:

· Root layer (has “root” ID). This and only this layer should be used to add any child component on the desktop area.

· Window layer (has “win” ID). This layer should be used to open, close, activate LwVCL window on the desktop.

To work with the layers LwDesktop provides set of methods. The desktop is the lightweight container so to add, remove, inert layers in the container the container API can be used.

Lightweight application and applet

This chapter describes lightweight application components. The desktop is the base for any lightweight application. The desktop provides set of layers where all other lightweight components can be resided. As it has been described in the previous chapter the desktop provides two layers that are ready to use:

1. Root layer. Use getRootLayer() desktop method to get the layer. The layer should be used to add any child components to the desktop.

2. Window layer. Use getLayer(“win”) desktop method to get the layer. The layer provides ability to open, close, activate internal window components. It is possible to use any lightweight component as the window. For example, combo box component shows popup pad as the lightweight window. Moreover the library provides LwWindow component that is much like “classical” window. Draw attention that any desktop window cannot be rendered outside the desktop area, that is this is like Java SWING internal frames implementation.

The next question is how to create a lightweight application. To create a standalone application you can use LwFrame class. This is not a lightweight component, actually this is an extension of java.awt.Frame class where the lightweight desktop is resided. To get the desktop root layer use getRoot() method of the LwFrame class. The sample bellow illustrates this class usage:

…

LwFrame frame = new LwFrame();

frame.setSize(400, 400);

LwContainer root = frame.getRoot();

root.add(new LwButton(“Button 1”));

…

frame.setVisible (true);

…

The library provides LwApplet class that is like LwFrame and should be used for lightweight applet creation as follow:

…

public class MyApplet

extends LwApplet

{

public void init ()

{

 super.init();

 LwContainer root = getRoot();

 root.add (new LwButton(“Button 1”));

 …

}

…

}

Lightweight windows

LwVCL library supports internal windows. The window support is implemented by a window layer. The list below illustrates basic notions of the window concept:

· There is not a special component that implements the lightweight window, since any lightweight component can be used as the window.

· A lightweight window can be opened, closed, activated or deactivated using the window layer (see LwWinLayer class). The layer can be got by the getLayer(…) method of the desktop. Use “win” as the layer ID.

· A lightweight window is placed inside desktop area and it is impossible to show the window outside this area.

· A modal window is activated immediately as it is opened.

· A modal window doesn’t allow activation of the windows that have been opened before it.

· Focus can shift between a set of components inside active window with TAB key.

· Active window is a destination for all originated events; it means that other none-active windows won’t get any events.

Image below shows state transitions of a particular window between consecutive opening and closing. When a window changes a state, listeners are notified on the event corresponding to state window transits to.

[image: image6.png]
The library provides ability to open special window named information window. The main difference from the modal and none-modal windows is such window cannot have active state and so cannot catch lightweight events stream. Actually the window just shows some information and doesn’t participate in a user interaction.

The library extension has LwWindow component that is like standard window and it can be used to organize MDI interface.

Support available

All support for library usage and problems should be sent directly to support@zaval.org with “Re: Zaval Light-Weight Visual Component Library Support” in subject line and plain text in the message body, describing your request and/or your problem.

The Zaval Creative Engineering Group carries out its software customization/new software development on the regular basis. For more info contact us at info@zaval.org.

Stay informed!

Now you can receive information on latest products’ updates and hotfixes via email. This is a low-traffic list (1-2 messages per month). To subscribe, send blank mail to news-subscribe@zaval.org.

� EMBED Word.Picture.8 ���

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.

http://www.zaval.org

[image: image7.png]_1096828720.doc
[image: image1.png]

