
Lab 1: Java API Essentials
Lab objectives:

• Refresh knowledge of Java;
• Get familiar with the best coding practices;
• Correct coding style if needed;

JDK
For the labs: the only applicable JDK will be 1.5.0 (you can download prepared package
from http://www.zaval.org). It should be installed to: c:\jdk

Environment variables
Setup the following environment variables:
JAVA_HOME = c:\jdk
CLASSPATH = .;%JAVA_HOME%\lib;%JAVA_HOME%\jre\lib;
PATH = %JAVA_HOME%\bin;%PATH%;
Note: save previously set variables (if any) and restore them at the end of the lesson.

Tasks Specification
Note: Each task should be in package it.unitn.web.NAME, where NAME is
corresponding task’s name (streams, threads, etc).

I/O Streams (30 minutes)
Task objectives:

• Refresh the principles of streams usage in Java;
• Understand the difference between Streams and Reader/Writer objects;

Task description:
• On input you have string “Department of Information and Communication

Technology”;
• Compress the string utilizing GZIP compression;
• Uncompress the string;
• Make sure both strings are identical;

Hint: make chains GZIPOutputStream->ByteArrayOutputStream and
ByteArrayInputStream->GZIPInputStream.

Threads (30 minutes)
Task objectives:

• Refresh the fundamentals of threads;
• Refresh threads’ synchronization basics;

Task description:
• Scan TCP ports from X to Y on specified computer within single thread;
• Scan the same ports in parallel using N threads;
• Log scan results to file (using separate thread and a queue);
• Check and report time spent in each case for scanning.

Notes:
• Scan means check whether port is open or not;
• N is less or equal to Y-X;
• N, X and Y can be specified as input parameters.

http://www.zaval.org

Serialization (20 minutes)
Task objectives:

• Refresh the basics of serialization;
Task description:

• Make Hashtable object and fulfill it with 3-5 objects of type String;
• Save it to disk;
• Restore it from disk to another Hashtable object;
• Make sure initial and restored object are identical;
• Make custom object with fields of type String, int [] and long (primitive types, not

Integer/Long);
• Populate it with values and save to disk:

o Using ObjectOutputStream;
o Using DataOutputStream;

• Restore from disk;
• Make sure object is identical to the original.

Protocols (1 hour)
Task objectives:

• Understand how to organize simple communication utilizing specified exchange
protocol;

• Refresh networking API;
Task description:

• Run server part for this task;
• Connect to server part with telnet (TCP port 2700 on localhost);
• Use help command;
• Login with login=admin and password=web;
• Request info about file test.txt;
• Retrieve file test.txt;
• Logout;
• Write simple client that does steps described above without human intervention

(file should be saved to the location specified).
Protocol:

• Each command should end with new line character (“\n”);
• Command execution status can be verified by server response – in case of

success it will return “OK”, in case of fail - “FAILED”, and
“COMMAND_UNKNOWN” in case of unknown command.

• Important Note: LOGOUT and EXIT commands disconnects client without
returning any value.

States diagram (states and state changes):
NOTAUTHORISED ->AUTHORISED (after successful LOGIN)
 ->NOTAUTHORISED (otherwise)
AUTHORISED ->NOTAUTHORISED (after LOGOUT or EXIT)
 ->AUTHORISED (otherwise)

Reflection API (optional) (20 minutes)
Task objectives:

• Refresh reflection API basics;
Task description:

• Create method that accept any object of class Object;

• Depending on the actual class of object that can be Integer, String or any other it
returns values 0, 1 or 2 respectively;

• It prints actual class name of the object to the output;
• Create method that accepts class name as string;
• It prints out all constructors for this class of object;
• It tries to create the object of specified type in case there is empty constructor

available and does nothing otherwise;
• Create methods that check if the specified method and field exit in the object of

indicated type.

